4.7 Article

The gut microbiota alteration and the key bacteria in Astragalus polysaccharides (APS)-improved osteoporosis

期刊

FOOD RESEARCH INTERNATIONAL
卷 138, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2020.109811

关键词

Gut microbiota; Astragalus polysaccharide; Osteoporosis; Key bacteria

资金

  1. Open Project Program of Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods

向作者/读者索取更多资源

Osteoporosis is a worldwide epidemic, and certain functional foods can alleviate osteoporosis with great efficiency. Here, in a dexamethasone-induced osteoporosis rat model, it was proved that APS could restore the bone mineral density (BMD) and repair the impairment of bone microarchitecture, two major features of osteoporosis. In APS-treated rats, acid phosphatase 5 (ACP5) and pro-inflammatory cytokines (TNF-alpha and IL-2) were significantly decreased. This suggested that APS might improve osteoporosis by inhibiting osteoclastogenesis and preventing inflammation. Further analysis on the bacterial community revealed that the structure of gut microbiota was dramatically changed by APS, and 13 bacteria (such as c_Bacteroidia, p_Bacteroidetes, and g_Allpprevotella) could serve as biomarkers for APS-improved osteoporosis. Furthermore, five genera (uncultured_bacterium_f_Ruminococcaceae, Alloprevotella, Ruminococcaceae_UCG-014, Blautia and Lactobacillus) were inferred as the key bacteria in APS-improved osteoporosis. In conclusion, APS-modified gut microbiota and the potential key bacteria to alleviate osteoporosis, as well as its relationship with improved osteoporosis, were investigated in our present study. Our results will help to understand how APS improves osteoporosis by regulating gut microbiota and contribute to the development and application of functional foods to alleviate refractory osteoporosis by regulating targeted intestinal bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据