4.7 Article

A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying

期刊

FOOD CHEMISTRY
卷 325, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2020.126932

关键词

Ascorbic acid; Total phenolic content; 3D mathematical model; Heat and mass transfer; IMCD

资金

  1. Advance Queensland Fellowship Project (AQF) [02073-201530358/15]

向作者/读者索取更多资源

Intermittent microwave convective drying (IMCD) is an advanced drying method where volumetric heating of samples drives the drying process. Understanding of the physical effects of IMCD on simultaneous heating and mass transfer as well as quality changes during IMCD is essential to predict accurately drying processes and quality attributes of end products. However, there is a lack of studies in this particular interest area. The aim of this research was to develop an IMCD model coupled with quality degradation kinetics by integrating a simultaneous heat and mass transfer model with Maxwell's equations for microwave heating and the chemical reaction kinetics model. The simulated results were compared with experimental results and a good agreement was observed. As it was found that power ratio (PR) had a vital role in altering quality attributes, different PR and drying conditions were considered to investigate the effects of IMCD on the drying kinetics. The simulated results showed that the model was capable of predicting accurately moisture and temperature distributions along with heath beneficial compounds, such as total phenolic content (TPC) and ascorbic acid (AA) as well as colour changes during IMCD processing. About 70% of AA was degraded during IMCD drying using PR of 1/3. However, losses were reduced when PR was reduced to 1/4 or 1/5. Likewise, TPC degraded significantly during the early stages (first 60 min) of IMCD processing but stabilised at later stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据