4.7 Article

A modified Sine Cosine Algorithm with novel transition parameter and mutation operator for global optimization

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 154, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2020.113395

关键词

Optimization; Sine Cosine Algorithm; Exploration and exploitation; Multilayer perceptron; Engineering optimization problems; Algorithm; Benchmark; Grey Wolf Optimizer; Particle Swarm Optimization; Genetic Algorithm

向作者/读者索取更多资源

Inspired by the mathematical characteristics of sine and cosine trigonometric functions, the Sine Cosine Algorithm (SCA) has shown competitive performance among other meta-heuristic algorithms. However, despite its sufficient global search ability, its low exploitation ability and immature balance between exploitation and exploration remain weaknesses. In order to improve Sine Cosine Algorithm (SCA), this paper presents a modified version of the SCA called MSCA. Firstly, a non-linear transition rule is introduced instead of a linear transition to provide comparatively better transition from the exploration to exploitation. Secondly, the classical search equation of the SCA is modified by introducing the leading guidance based on the elite candidate solution. When the above proposed modified search mechanism fails to provide a better solution, in addition, a mutation operator is used to generate a new position to avoid the situation of getting trapped in locally optimal solutions during the search. Thus, the MSCA effectively maximizes the advantages of proposed strategies in maintaining a comparatively better balance of exploration and exploitation as compared to the classical SCA. The validity of the MSCA is tested on a set of 33 benchmark optimization problems and employed for training multilayer perceptrons. The numerical results and comparisons among several algorithms show the enhanced search efficiency of the MSCA. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据