4.4 Article

Serum-derived exosomes from neurofibromatosis type 1 congenital tibial pseudarthrosis impaired bone by promoting osteoclastogenesis and inhibiting osteogenesis

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 246, 期 2, 页码 130-141

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1535370220962737

关键词

Congenital pseudarthrosis of the tibia; exosomes; osteoclast; osteoblast; bone microstructure

向作者/读者索取更多资源

This study identified differentially expressed proteins in SDEs of CPT children, which contributed to abnormal bone remodeling and bone loss.
Treatment of congenital pseudarthrosis of the tibia (CPT) still is full of challenges in pediatric orthopedist. Serum-derived exosomes (SDEs) have been proven to be participated in bone remodeling. However, the molecular changes in SDEs of CPT children and their pathologies have not been elucidated. In this study, SDEs were isolated and purified from CPT patients (CPT-SDEs) associated with neurofibromatosis type 1 (NF1) and normal children (Norm-SDEs). Then we obtained the proteomics profile of SDEs by combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tandem mass tag label-based quantitation. In vitro, the efficacy of SDEs on osteoblastic differentiation of MC3T3-E1 cells and osteoclastogenesis ability of RAW264.7 cells were evaluated by quantitative real-time PCR (qRT-PCR) and cytochemical staining. In vivo, we used micro-CT to assess cortical bone mass and trabecular microstructures to reflect the influence of SDEs on bone remodeling after injection into the tail vein of rats. Based on proteomics analysis, 410 differentially expressed proteins, including 289 downregulated proteins and 121 upregulated proteins, were identified in the CPT-SDEs. These proteins have multiple biological functions associated with cellular metabolic processes, catalytic activity, and protein binding, which are important for cell differentiation and proliferation. In vitro, CPT-SDEs decreased the osteogenic differentiation of MC3T3-E1 cells and promoted the osteoclastogenesis of RAW264.7 cells. Injection of CPT-SDEs into the tail vein for two months resulted in bone loss in rats, as indicated by the decrease in trabecular and cortical bone mass. Our findings demonstrated the differences in proteins in SDEs between normal and CPT children with NF1. These differentially expressed proteins in CPT-SDEs contributed to deteriorating trabecular bone microstructures by inhibiting bone formation and stimulating bone resorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据