4.8 Article

Molecular Dynamics Simulation of the Structures, Dynamics, and Aggregation of Dissolved Organic Matter

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 21, 页码 13527-13537

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c01176

关键词

-

资金

  1. U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research [DE-SC0016478]
  2. U.S. DOE [DE-AC05-00OR22725]
  3. U.S. Department of Energy (DOE) [DE-SC0016478] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Dissolved organic matter (DOM) plays a significant role in the transport and transformation of pollutants in the aquatic environment. However, the experimental characterization of DOM has been limited mainly to bulk properties, and the molecular-level interactions among various components of DOM remain to be fully characterized. Here, we use molecular dynamics (MD) simulations to probe the structural properties of model DOM systems at atomic detail. The 200 ns simulations, validated by available experimental data, reveal processes and mechanisms by which chemical species (cations, peptides, lipids, lignin, carbohydrates, and some low-molecular-weight aliphatic and aromatic compounds) aggregate to form complex DOM. The DOM aggregates are dynamic, consisting of a hydrophobic core and amphiphilic exterior. The lipid tails and other hydrophobic fragments form the core, with hydrophilic and amphiphilic groups exposed to water, making DOM accessible to both polar and nonpolar species. Thus, the lipid component acts as a nucleator, whereas cations (especially Ca2+) connect the molecular fragments on the surface by coordinating with the O-containing functional groups of DOM. The structural details revealed here provide new insights including surface accessible atoms, overall assemblage, and interactions among the molecules of DOM for understanding the kinetics and mechanisms through which DOM interacts with metal and other contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据