4.8 Article

Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 21, 页码 13409-13418

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c02958

关键词

-

资金

  1. National Natural Science Foundation of China [21625701]

向作者/读者索取更多资源

The impact of chlorine (Cl) chemistry on the formation of secondary organic aerosol (SOA) during a severe wintertime air pollution episode is investigated in this study. The Community Multiscale Air Quality (CMAQ) model v5.0.1 with a modified SAPRC-11 gas-phase mechanism and heterogeneous reactions for reactive chlorine species is updated to include the formation of chlorine radical (Cl-center dot)- initiated SOA (Cl-SOA) from aromatic compounds, terpenes, and isoprene. Reported SOA yield data on Cl-SOA formation from environmental chamber studies are used to derive the mass yield and volatility data for the two-product equilibrium-partitioning model. The heterogeneous reaction of particulate chloride (pCl(-)) leads to a significant increase in the Cl-center dot and hydroxyl radical (OH) concentrations throughout the domain. Monthly Cl-SOA concentrations range from 0.7 to 3.0 mu g m(-3), with increasing anthropogenic Cl emissions leading to higher Cl-SOA concentrations. Indirectly, this also leads to an increase of monthly SOA by up to 2.5-3.0 g mu m(-3) from the traditional OH oxidation pathways as well as the surface uptake of glyoxal and methylglyoxal. Increased OH concentrations, however, do not always lead to higher overall SOA concentrations in the entire domain. High OH reduces the lifetime of glyoxal/methylglyoxal (GLY/MGLY), making them less available to form SOA. In the Sichuan Basin (SCB) and part of Southwest China where high O-3 concentrations meet high pCl emissions, a higher Cl-center dot/OH ratio leads to net O-3 loss from the Cl-center dot + O-3 reaction, thus reducing SOA formation from the O-3 oxidation of volatile organic compounds (VOCs). Also, the competition between Cl-center dot and OH for VOCs could lead to lower overall SOA because the molar yields of the semivolatile products in Cl-VOC reactions are lower than their OH + VOC reaction counterparts. When Cl-center dot concentrations are further increased with higher emissions of Cl, precursor gases can be depleted and become the limiting factor in SOA formation. This study reveals the direct and indirect impacts of chlorine chemistry on SOA in polluted winter conditions, which are greatly affected by the Cl emissions, the ambient O-3 level, and the availability of SOA precursors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据