4.7 Article

Facile synthesis of CuO/CdS heterostructure photocatalyst for the effective degradation of dye under visible light

期刊

ENVIRONMENTAL RESEARCH
卷 188, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.109803

关键词

CuO/CdS; Heterostructure photocatalyst; Photodegradation; Visible light; Rhodamine B

资金

  1. Deanship of Scientific Research, King Faisal University, Kingdom of Saudi Arabia [160087]

向作者/读者索取更多资源

In this work, the photocatalytic property of p-type CuO was tailored by creating a heterojunction with n-type CdS. The CuO/CdS nanocomposite photocatalyst was synthesized by the ultrasound-assisted-wet-impregnation method and the physicochemical and optical properties of the catalysts were evaluated by using N-2 physisorption, X-Ray Diffraction (XRD),X-Ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, Transmission electron microscopy (TEM), Energy dispersive X-Ray (EDX) mapping, Field Emission Scanning Electron Microscope (FE-SEM), UV-Vis and photoluminescence spectroscopy experiments. Detailed characterization revealed the formation of a nanocomposite with a remarkable improvement in the charge carrier (electron/hole) separation. The photocatalytic degradation efficiencies of CuO and CuO/CdS were investigated for different dyes, for instance, rhodamine B (RhB), methylene blue (MLB), methyl blue (MB) and methyl orange (MO) under visible light irradiation. The obtained dye degradation efficiencies were similar to 93%, similar to 75%, similar to 83% and similar to 80%, respectively. The quantum yield for RhB degradation under visible light was 6.5 x 10(-5). Reusability tests revealed that the CuO/CdS photocatalyst was recyclable up to four times. The possible mechanisms for the photocatalytic dye degradation over CuO/CdS nanocomposite were elucidated by utilizing various scavengers. Through these studies, it can be confirmed that the conduction band edges of CuO and CdS play a significant role in producing O-2(-). The produced O-2(-) degraded the dye molecules in the bulk solution whereas the valence band position of CuO acted as the water oxidation site. In conclusion, the incorporation of CuO with CdS was demonstrated to be a viable strategy for the efficient photocatalytic degradation of dyes in aqueous solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据