4.7 Article

Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM

期刊

ENGINEERING WITH COMPUTERS
卷 38, 期 SUPPL 1, 页码 219-242

出版社

SPRINGER
DOI: 10.1007/s00366-020-01144-2

关键词

Chaotic responses; Multi-hybrid reinforced annular plate; Thermal environment; von Karman nonlinearity; Poincare section

向作者/读者索取更多资源

A nonlinear dynamic model is developed for the frequency and chaotic responses of a multi-scale hybrid nano-composite reinforced disk. The effects of different external loads and FG patterns on the motion response of the structure are investigated. It is recommended to choose plates with lower thickness relative to the outer radius for better vibration performance.
In this research, a mathematical derivation is made to develop a nonlinear dynamic model for the nonlinear frequency and chaotic responses of the multi-scale hybrid nano-composite reinforced disk in the thermal environment and subject to a harmonic external load. Using Hamilton's principle and the von Karman nonlinear theory, the nonlinear governing equation is derived. For developing an accurate solution approach, generalized differential quadrature method (GDQM) and perturbation approach (PA) are finally employed. Various geometrically parameters are taken into account to investigate the chaotic motion of the viscoelastic disk subject to harmonic excitation. The fundamental and golden results of this paper could be that in the lower value of the external harmonic force, different FG patterns do not have any effects on the motion response of the structure. But, for the higher value of external harmonic force and all FG patterns, the chaos motion could be seen and for the FG-X pattern, the chaosity is more significant than other patterns of the FG. As a practical designing tip, it is recommended to choose plates with lower thickness relative to the outer radius to achieve better vibration performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据