4.4 Article

Zero-sequence current injection based power flow control strategy for grid inverter interfaced renewable energy systems

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15567036.2020.1834029

关键词

Energy management; power flow control; grid inverter; hybrid energy system; zero-sequence currents

向作者/读者索取更多资源

This paper proposes an improved energy management method to address the energy management issue for grid-connected renewable energy sources connected with unbalanced loads. The method compensates zero-sequence currents and ensures phase equilibrium at the grid-side through zero-sequence current injection. The effectiveness of the method is demonstrated through testing in a photovoltaic/fuel cell-based hybrid energy system.
This paper deals with an energy management issue for the grid-connected renewable energy sources connected with unbalanced loads. In the grid-connected energy systems, conventional energy management methods are used to manage balanced active power supplied from energy units to grids/loads. However, unbalanced load groups, like single-phase loads, parallel rectifiers, and three-winding transformers tied to the electric networks, cause zero-sequence currents and impair the power stability at the grid-side. For this purpose, in this study, an improved power flow controller method with zero-sequence current injection is proposed in order to compensate zero-sequence currents and ensure phase equilibrium at grid-side. Therefore, it is tested in a photovoltaic/fuel cell-based hybrid energy system with unbalanced loads, including zero-sequence. Instead of the conventional abc/dq frame used in energy management control, the proposed method makes use of triple alpha beta transforms and implemented in each phase to be controlled separately under designed unbalanced load groups. Hence, it abolishes the weakness of the conventional abc/dq frame method that generates the undesirable mean reference for zero-sequence situations. In addition, the designed system cannot only mitigate the grid-side zero-sequence currents but also supply active powers to three-phase loads/grids. The optimization of energy systems is also provided through a maximum power point tracking algorithm. In the performance testing, the energy generation units are performed under three states, which produce different supplied currents at the output. In the performance section, it is obvious that zero-sequence components at grid-side currents are significantly reduced via the proposed power flow controller-based system. Also, the results are compared to the conventional method in order to verify the validity of the proposed approach under the designed load groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据