4.7 Article

Thermodynamic analysis and optimization of four organic flash cycle systems for waste heat recovery

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 221, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113171

关键词

Organic flash cycle; Organic Rankine cycle; Thermodynamic analysis; Particle swarm optimization; Waste heat recovery

资金

  1. National Natural Science Foundation of China [51976147]

向作者/读者索取更多资源

The basic organic flash cycle (BOFC) system has difficulty in achieving the high system efficiency due to the great exergy destruction of the throttling process. To reduce the energy loss and increase the BOFC system's efficiency, three improved systems including the regenerative organic flash cycle (ROFC) system and two novel organic flash Rankine cycle (OFRC) systems were presented in this work. Thermodynamic analysis including energy, exergy and economic analysis were conducted to evaluate the performance of the system, and system optimization based on the particle swarm optimization (PSO) algorithm was performed to indicate the development potential of the system. In addition, performance comparison between four OFC systems and the basic organic Rankine cycle (BORC) system was also carried out. Obtained results showed that the largest exergy destruction of both the BOFC system and the ROFC system was caused by the throttling process, while the biggest energy loss of the two OFRC systems was caused by the heat transfer process in the heat recovery unit. Compared with the ROFC system and the OFRC-I system, the OFRC-II system was considered to be the most promising solution in enhancing the performance of the BOFC system. Finally, optimization results showed that the OFRC-II system had the higher global thermal and exergy efficiencies, compared to the BORC system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据