4.7 Article

The equivalent low-dissipation combined cycle system and optimal analyses of a class of thermally driven heat pumps

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 220, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113100

关键词

Thermally driven heat pump; Three-heat-source cycle model; Low-dissipation assumption; Performance bound; Optimal analyses

资金

  1. National Natural Science Foundation of China [11405032]
  2. Junta de Castilla y Leon of Spain [SA017P17]
  3. University of Salamanca [2017/X005/1]

向作者/读者索取更多资源

The performance characteristics, operation, and design strategies of a class of thermally driven heat pumps are investigated due to their important roles in the efficient utilization of low-grade thermal energy. In order to establish a more generic thermodynamic model of thermally driven heat pumps mainly including absorption, adsorption, and ejector heat pumps, low-dissipation assumption is adopted. Accordingly, the associated dissipation parameters accounting for the specific information on the irreversibilities in each heat-transfer process are introduced rather than specifying heat-transfer law. Based on the proposed model, the theoretical results of the coefficient of performance and heat load are derived with regard to two key parameters denoting the size ratio of the two involved subsystems and the matching deviation from reversible limit. The performance characteristics and the optimally operating regions of the whole system are determined and the differences between thermally driven heat pump and refrigerator are highlighted. The proposed model and obtained results further develop the low-dissipation model and may provide a useful description for the operation and design of practical thermally driven heat pumps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据