4.7 Article

Supervised machine learning of thermal comfort under different indoor temperatures using EEG measurements

期刊

ENERGY AND BUILDINGS
卷 225, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2020.110305

关键词

Machine learning; electroencephalogram (EEG); Supervised learning; Thermal comfort; Human sensing

资金

  1. Republic of Singapore's National Research Foundation

向作者/读者索取更多资源

In this paper, machine learning techniques in conjunction with passive EEG (electroencephalogram) measurement were explored to classify occupants' real-time thermal comfort states, which have the potential in the future for energy saving through adopting time varying set points when real-time changes in thermal comfort can require less energy input. The performances of different machine learning techniques were compared, and the method to select linear continuous features for class interpolation was also explored. For the full-set features, the performances of different classifiers were satisfactory, with classification rates all above 90%. The LDA classifier had the best performance. The second best was the NB classifier, and the relatively worst was the KNN classifier. The linear continuous EEG features were selected by interpolation and can be found for all human subjects. Higher selection threshold led to less selected features but higher average performance of these features. In general, the EEG based machine learning methods can classify occupants' real-time thermal comfort states, and could potentially lead to more building energy saving through comfort-driven time varying set points. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据