4.7 Article

Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle

期刊

ENERGY
卷 209, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118452

关键词

Concentrated solar power (CSP); Thermochemical energy storage (TCES); Calcium looping; Supercritical CO2 Brayton cycle; Storage and power exergy efficiencies

向作者/读者索取更多资源

Dispatchability is a major technological obstacle for concentrated solar power (CSP) plants. Calcium looping (CaL) is a potential solution for storing solar energy for long periods using raw materials (e.g., natural limestone or dolomite) which are high energy density, widespread availability, and low cost. This study aimed to propose a CSP-CaL plant indirectly integrated with the recompression supercritical CO2 Brayton cycle to realize carbonation under atmospheric pressure. To understand this indirect integration, the thermodynamic models are developed in Aspen and Matlab. The results show that the considered system can achieve storage exergy efficiency in the range of 8.26-16.34%, and power exergy efficiency in the range of 13.6-23.85%. In addition, a sensitivity analysis reveals that the storage exergy efficiency is largely determined by reaction temperature and conversion. Its value decreases with calcination temperature, and increases with carbonation temperature and CaCO3 conversion. Besides, it is found that the power exergy efficiency increase with an increase in power conditions (cycle low pressure, intermediate cycle pressure, and cycle high pressure) initially. However, above a certain pressure (80, 170, 210 bar, respectively), further increase leads to a decrease in power exergy efficiency. The results also indicate that high reaction temperature has a positive effect on power exergy efficiency. Compared to the moltensalt-based and direct integration, this CSP-CaL indirect integration offers competitive performance and promising potential for the commercialization of CSP-CaL systems in the near future. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据