4.7 Article

Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation

期刊

ENERGY
卷 206, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118136

关键词

Oxy-combustion; Chemical looping air separation; Process simulation; Exergy analysis; Techno-economic evaluation

资金

  1. National Key R&D Program of China [2016YFB0600801]

向作者/读者索取更多资源

Oxygen supply from cryogenic air separation unit (ASU) causes high economic cost and energy penalty, which hinders the practicability of oxy-combustion technology. Chemical looping air separation (CLAS) as a thermodynamic-efficient and cost-effective approach can satisfy the oxygen demands for oxy-combustion power plants. To optimize process configuration and identify the effect of recycling position for oxy-combustion power plants integrating CLAS (i.e. OXY-CLAS), the paper focuses on process simulation, thermodynamic analysis and techno-economic evaluation of two typical OXY-CLAS systems. For sastifying the oxygen concentration demand in oxy-combustion, the mixture of recycled flue gas and steam is adopted as the reduction medium in CLAS. For OXY-CCLAS (using cold recycled flue gas as oxygen releasing medium in CLAS), its net efficiency and exergy efficiency are 4.80 and 4.54% points higher than those of oxy-combustion coupled with cryogenic ASU, respectively. Meanwhile, its cost of electricity is reduced about 12.18% whilst its CO2 avoidance cost and CO2 capture cost decrease about 48.14% and 39.34%, respectively. When compared between two OXY-CLAS systems, OXY-WCLAS (utilizing warm recycled flue gas in CLAS) exhibits better performance both on thermodynamic and economic aspects. The exergy efficiency of WCLAS system is 1.29% points higher than that of CCLAS system. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据