4.6 Review

Cellular and Molecular Mechanisms of Metformin Action

期刊

ENDOCRINE REVIEWS
卷 42, 期 1, 页码 77-96

出版社

ENDOCRINE SOC
DOI: 10.1210/endrev/bnaa023

关键词

metformin; type 2 diabetes; hepatic gluconeogenesis; redox

资金

  1. United States Public Health Service [R01 DK114973, R01 DK113984, R01 DK116774, R01 DK119968, RC2 DK120534, P30 DK045735, GM007324]

向作者/读者索取更多资源

Metformin is a commonly used first-line therapy for type 2 diabetes, mainly acting through inhibition of hepatic gluconeogenesis to lower blood glucose levels. Despite controversy over its mechanism of action, recent studies have supported a redox-dependent mechanism.
Metformin is a first-line therapy for the treatment of type 2 diabetes, due to its robust glucose-lowering effects, well-established safety profile, and relatively low cost. While metformin has been shown to have pleotropic effects on glucose metabolism, there is a general consensus that the major glucose-lowering effect in patients with type 2 diabetes is mostly mediated through inhibition of hepatic gluconeogenesis. However, despite decades of research, the mechanism by which metformin inhibits this process is still highly debated. A key reason for these discrepant effects is likely due to the inconsistency in dosage of metformin across studies. Widely studied mechanisms of action, such as complex I inhibition leading to AMPK activation, have only been observed in the context of supra-pharmacological (>1 mM) metformin concentrations, which do not occur in the clinical setting. Thus, these mechanisms have been challenged in recent years and new mechanisms have been proposed. Based on the observation that metformin alters cellular redox balance, a redox-dependent mechanism of action has been described by several groups. Recent studies have shown that clinically relevant (50-100 mu M) concentrations of metformin inhibit hepatic gluconeogenesis in a substrate-selective manner both in vitro and in vivo, supporting a redox-dependent mechanism of metformin action. Here, we review the current literature regarding metformin's cellular and molecular mechanisms of action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据