4.6 Article

Combination of magnetically actuated flexible graphite-polymer composite cathode and boron-doped diamond anode for electrochemical water softening or wastewater treatment

期刊

ELECTROCHIMICA ACTA
卷 354, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.136729

关键词

Cathodic deposits; EAOP; EWS; Flexion; Moving electrode

资金

  1. Federal Ministry of Education and Research Bundesministerium fur Bildung und Forschung (BMBF), Germany [03XP0107]

向作者/读者索取更多资源

An electrochemical reactor based on a moving graphite-polymer composite (GPC) cathode and boron-doped diamond anode is developed and used for the electrochemical water softening and treatment of artificial vacuum toilet wastewater. The magnetically actuated cathode is designed for the in situ removal of insoluble compounds, which usually precipitate on the cathode during electrochemical water treatment processes. To obtain a suitable GPC cathode, the chemical stability and conductivity of various composites and their flexion and magnetic actuator characteristics are investigated. The most suitable GPC cathode is a 0.5 mm thick polypropylene-based composite, which presents chemical stability, the lowest resistivity of all analyzed samples (5.06 +/- 1.80 m Omega cm), and enables flexions up to 2.4 mm. The water softening performance of the reactor featuring this electrode was evaluated using two configurations. Water hardness was decreased up to 72% and more than 90% in mixed and separated electrolyte modes, respectively. Further investigations demonstrate that this reactor can also be used for wastewater treatment. Artificial toilet wastewater was successfully discolored for reuse as toilet flushing water. Lastly, a treatment test over 120 h demonstrates that the magnetically actuated flexible GPC cathode removes in situ deposits on its surface and requires low maintenance. The performance of the new electrode configuration is similar to that of the state-of-the-art polarity reversal system and does not shorten the electrode service life. (C) 2020 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据