4.6 Article

Decentralized DLMPs with synergetic resource optimization and convergence acceleration

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 187, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2020.106467

关键词

Convergence speed; Distributed energy resources; Distribution network; DLMP; Decentralized optimization

向作者/读者索取更多资源

Dynamic pricing has been proposed for scheduling and controlling distributed energy resources (DERs) to mitigate operational problems in distribution networks. In this paper, we employ distribution locational marginal prices (DLMPs) to optimally schedule DERs, considering both line and voltage constraints. DLMPs are calculated in an iterative, decentralized manner to respect user privacy, using dual decomposition and the subgradient method. The inclusion of generating DERs in the problem formulation, and the nature of the subgradient method, may significantly increase the amount of required iterations. Recognizing the importance of convergence speed in such a mechanism, we act upon this by proposing a novel concept to identify and remove redundant constraints of the problem. The method is based on network topology observations in radial distribution networks. Redundant constraints are mapped to the respective Lagrange multipliers and are set to zero, thereby significantly increasing convergence speed. We validate our method in a 33 and a 136 bus system, showing the synergies of the co-optimization of generating and consuming DERs, and reducing the number of iterations at least threefold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据