4.7 Article

Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.110877

关键词

Pinellia ternata; High temperature; RNA sequencing; Heat-stress responsive genes; Exogenous spermidine treatment; Exogenous melatonin treatment

资金

  1. Technical Innovation Program of Hubei Province [2018ZYYD013]

向作者/读者索取更多资源

Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up-and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据