4.7 Review

Toward in vivo relevant drug design

期刊

DRUG DISCOVERY TODAY
卷 26, 期 3, 页码 637-650

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.drudis.2020.10.012

关键词

-

向作者/读者索取更多资源

Current early and preclinical drug discovery are rooted in decades-old empirical principles describing structure-free energy and structure? function relationships under equilibrium conditions that frequently break down under in vivo conditions. Improved prediction of efficacy and toxicity depends on a paradigm shift to in vivo-relevant principles describing the true nonequilibrium/nonlinear dynamic (NLD) nature of cellular systems. Here, we outline a holistic, in vivo-relevant first principles theory (?Biodynamics?), in which cellular function/dysfunction, and pharmaco-/toxicodynamic effects are considered as emergent behaviors of multimolecular systems powered by covalent and noncovalent free energy sources. The reduction to practice of Biodynamics theory consists of in silico simulations performed at the atomistic and molecular systems levels, versus empirical models fit to in vitro data under the classical paradigm. Current early and preclinical drug discovery are rooted in decades-old empirical principles describing structure-free energy and structure? function relationships under equilibrium conditions that frequently break down under in vivo conditions. Improved prediction of efficacy and toxicity depends on a paradigm shift to in vivo-relevant principles describing the true nonequilibrium/nonlinear dynamic (NLD) nature of cellular systems. Here, we outline a holistic, in vivo-relevant first principles theory (?Biodynamics?), in which cellular function/dysfunction, and pharmaco-/toxicodynamic effects are considered as emergent behaviors of multimolecular systems powered by covalent and noncovalent free energy sources. The reduction to practice of Biodynamics theory consists of in silico simulations performed at the atomistic and molecular systems levels, versus empirical models fit to in vitro data under the classical paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据