4.7 Article

Adiponectin treatment improves insulin resistance in mice by regulating the expression of the mitochondrial-derived peptide MOTS-c and its response to exercise via APPL1-SIRT1-PGC-1α

期刊

DIABETOLOGIA
卷 63, 期 12, 页码 2675-2688

出版社

SPRINGER
DOI: 10.1007/s00125-020-05269-3

关键词

Adiponectin; Diabetes; Exercise-mediated signalling; Mitochondrial biogenesis; MOTS-c; Skeletal muscle

资金

  1. Natural Science Foundation of China [30971414, 81273096]

向作者/读者索取更多资源

Aims/hypothesis Adiponectin stimulates mitochondrial biogenesis through peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha), a major regulator of mitochondrial biogenesis. MOTS-c (mitochondrial open reading frame of the 12S rRNA) is a biologically active mitochondrial-derived peptide encoded by mitochondrial DNA. It influences the mechanisms of obesity and diabetes. We hypothesised that the adiponectin pathway may regulate the production and/or secretion of MOTS-c in skeletal muscle. We aimed to determine whether exercise and adiponectin affect MOTS-c to improve insulin resistance in mice. Methods To investigate this hypothesis, we used wild-type C57BL/6 mice subjected to high-fat diet, an exercise regimen, and i.p. injection of recombinant mouse adiponectin (Acrp30) or MOTS-c, and adiponectin knockout (Adipoq(-/-)) mice (C57BL/6 background) subjected to i.p. injection of Acrp30. C2C12 myotubes were also treated with sirtuin 1 (SIRT1) inhibitor, PGC-1 alpha inhibitor, SIRT1 activator, plasmid-expressed active APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper), pcDNA-SIRT1, or siRNA against APPL1, SIRT1 or PGC-1 alpha. Results In Adipoq(-/-) mice, MOTS-c levels in the plasma and skeletal muscle were downregulated. In C2C12 myotubes, adiponectin increased the mRNA expression of MOTS-c. APPL1 protein level following adiponectin treatment positively correlated with MOTS-c protein and mRNA levels in C2C12 myotubes. SIRT1 overexpression increased the adiponectin-induced mRNA and protein expression of MOTS-c, SIRT1 and PGC-1 alpha. Pharmacologic and genetic inhibition of PGC-1 alpha suppressed the increases in MOTS-c mRNA and protein levels induced by SIRT1 overexpression. In mice, plasma and skeletal muscle MOTS-c levels were significantly downregulated following high-fat-diet. Exercise and i.p. Acrp30 or MOTS-c increased MOTS-c levels and adiponectin mRNA and protein expression in the plasma and skeletal muscle. Conclusions/interpretation Our findings showed that the APPL1-SIRT1-PGC-1 alpha pathway regulates the production and/or secretion of skeletal muscle MOTS-c by mediating adiponectin signalling. Our study provides an insight into the cellular and molecular pathways underlying the pathogenesis of diabetes and shows that MOTS-c is a potential novel therapeutic target in the treatment of diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据