4.7 Article

Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis

期刊

DESALINATION
卷 491, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2020.114563

关键词

Hybrid membrane processes; Small, neutral solutes; Speciation; Calcium carbonate; Alginate

资金

  1. Center for Materials for Water and Energy Systems (M-WET), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0019272]

向作者/读者索取更多资源

Membranes have emerged as promising technologies for treatment of non-traditional waters, but fouling and poor rejection of small, neutral solutes (e.g., boric acid) impede their further implementation for water purification. Boron rejection is increased by raising the pH to convert boric acid to borate ion, but this change often leads to calcite supersaturation. This study investigated the use of a hybrid electrodialysis-nanofiltration/reverse osmosis (ED-NF/RO) system to reduce fouling from calcite precipitation and calcium-polysaccharide sorption to NF/RO membranes. Also, the study examined the potential of the hybrid process to increase permeate flux and boron rejection during NF/RO of synthetic saline water. ED pretreatment reduced calcite oversaturation and reduced flux decline during NF/RO. Low alginate concentrations (25 mg/L) limited NF/RO fouling, but high concentrations (100 mg/L) appeared to promote calcite scaling. ED pretreatment reduced the osmotic pressure of the NF/RO feed water, enabling lower operating pressures or greater permeate water fluxes. Boron rejection during NF/RO increased with ED pretreatment, probably due to stronger electrostatic repulsion and an increase in the fraction of total boron present as B(OH)(4)- following ED. This hybrid ED-NF/RO system shows promise as a novel approach to enhancing the performance of current membrane systems for treating complex feed waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据