4.5 Article

Probing the molecular mechanism of aggressive infection by antimony resistant Leishmania donovani

期刊

CYTOKINE
卷 145, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cyto.2020.155245

关键词

Cytokine; Antimony resistance; Leishmania; MicroRNA; HuR; PP2A

资金

  1. J.C. Bose Fellowship [SB/S2/JCB65/2014]

向作者/读者索取更多资源

Visceral leishmaniasis caused by Leishmania donovani can develop resistance to pentavalent antimonial drugs, leading to more aggressive infection in mammals. Alterations in miRNA pathways may provide a new strategy to control infection caused by drug-resistant parasites.
The disease visceral leishmaniasis (VL) or kala azar is caused by the protozoan parasite, Leishmania donovani (LD). For many decades the pentavalent antimonial drugs countered the successive epidemics of the disease in the Indian sub-continent and elsewhere. With time, antimony resistant LD (LDR) developed and the drug in turn lost its efficacy. Infection of mammals with LDR gives rise to aggressive infection as compared to its sensitive counterpart (LDS) coupled with higher surge of IL-10 and TGF-beta. The IL-10 causes upregulation of multidrug resistant protein-1 which causes efflux of antimonials from LDR infected cells. This is believed to be a key mechanism of antimony resistance. MicroRNAs (miRNAs) are tiny post-transcriptional regulators of gene expression in mammalian cells and in macrophage play a pivotal role in controlling the expression of cytokines involved in infection process. Therefore, a change in miRNA profiles of macrophages infected with LDS or LDR could explain the differential cytokine response observed. Interestingly, the outcome of LD infection is also governed by the critical balance of pro- and anti-inflammatory cytokines which is inturn regulated by miRNAAgo2 or miRNP complex and its antagonist RNA binding protein HuR. Here Ago2 plays the fulcrum whose phosphorylation and de-phosphorylation dictates the process; which in turn is controlled by PP2A and HuR. LDS and LDR upregulate PP2A and downregulate HuR at different magnitude leading to various levels of antiinflammatory to proinflammatory cytokine production and resulting pathology in the host. While ectopic HuR expression alone is sufficient to clear LDS infection, simultaneous upregulation of HuR and inhibition of PP2A is required to inhibit LDR mediated infection. Therefore, tampering with miRNA pathway could be a new strategy to control infection caused by LDR parasite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据