4.8 Article

Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha

期刊

CURRENT BIOLOGY
卷 30, 期 19, 页码 3833-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2020.07.016

关键词

-

资金

  1. MEXT/JSPS KAKENHI [JP19K06727, JP20H04883, JP20H05409, JP18H05487, JP17H06472, JP18H04836, JP25113001, JP25113009, JP15K21758]
  2. Australian Research Council [DP160100892, DP170100049]
  3. JSPS
  4. HFSP fellowships

向作者/读者索取更多资源

A key innovation in land plants was the evolution of meristems with stem cells possessing multiple cutting faces (division planes) from which three-dimensional growth is derived in both haploid (gametophyte) and diploid (sporophyte) generations [1-3]. Within each meristem exists a pool of stem cells that must be maintained at a relatively constant size for development to occur appropriately [4-6]. In flowering plants, stem cells of the diploid generation are maintained by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptide signaling [7, 8]. In the liverwort Marchantia polymorpha, the haploid body undergoes dichotomous branching, an ancestral characteristic of growth derived from the meristem, in which two equivalent body axes are developed via stem cell division, regulated by unknown molecular mechanisms. We show here that in M. polymorpha, treatment with MpCLE2/CLAVATA3 (CLV3) peptide resulted in the accumulation of undifferentiated cells, marked by MpYUC2 expression, in the apical meristem. Removal of MpCLE2 peptide resulted in multichotomous branching from the accumulated cells. Genetic analysis demonstrated that the CLAVATA1 (MpCLV1) receptor, but not the WUSCHEL-related HOMEOBOX (MpWOX) transcription factor, is responsible for MpCLE2 peptide signaling. In the apical meristem, MpCLV1 was expressed broadly in the central region, including the MpYUC2-positive area, whereas MpCLE2 was expressed in a largely complementary manner compared to MpYUC2, suggesting MpCLE2 mediates local cell-to-cell communication. CLV3/CLE peptide, a negative regulator of diploid stem cells in flowering plants, acts as a haploid stem cell-promoting signal in M. polymorpha, implicating a critical role for this pathway in the evolution of body plan in land plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据