4.7 Article

Changes in chemical phases and microscopic characteristics of fly ash blended cement pastes in different CO2 concentrations

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.119598

关键词

Chemical phases; Microscopic characteristics; Fly ash; Cement paste; Difference CO2 concentrations

资金

  1. National Natural Science Foundation of China [51978408, 51678368, U1801254]

向作者/读者索取更多资源

The effects of CO2 concentration on changes in chemical phases and microscopic characteristics for fly ash (FA) blended cement pastes were investigated in this study. Several microscopic test methods, including Xray diffraction (XRD), thermo-gravimetric analysis (TGA), Si-29 nuclear magnetic resonance (Si-29 NMR) and scanning electron microscope (SEM), were used to characterize the chemical compositions and microscopic features. The XRD results showed that the precipitation of allotropic calcium carbonate (C (C) over bar) includes calcite (c), aragonite (a) and vaterite (v). The ratio of c/(a + v) was around 0.6 under 3% and 20% CO2, while more percentage of calcite was generated under 100% CO2 (c/(a + v) = 0.79). The precipitation of more calcite than vaterite and aragonite happened with the CO2 concentration elevated to 100%. TGA analysis indicated that the total content of C (C) over bar was similar under all accelerated conditions and higher than that under natural carbonation. Additionally, in the Si-29 NMR spectra, more C-S-H (about 70%) was decalcified after accelerated carbonation compared with natural carbonation (54.1%). The decalcification degree was the same for 3% and 20% CO2 and showed the highest value under 100% CO2. The microstructure changes characterized by SEM observation exhibited denser microstructure after carbonation with the formation of C (C) over bar but no apparent difference was observed with different CO2 concentrations based on the SEM pictures. Compared with the carbonation of ordinary Portland cement (OPC) paste, the carbonation of FA blended cement paste was more inclined to precipitate as calcite than vaterite and aragonite and caused a lower decalcification degree of C-S-H. Overall, similar to OPC paste, the carbonation results obtained in natural and accelerated conditions for FA blended cement pastes were different and the conditions between 3% and 20% CO2 were similar while 100% CO2 showed different results. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据