4.7 Article

Experimental studies on hydration-strength-durability of limestone-cement-calcined Hwangtoh clay ternary composite

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 269, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.121290

关键词

Calcined Hwangtoh clay; Limestone; Hydration; Compressive strength; Electrical resistivity; Carbonation

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2015R1A5A1037548]
  2. NRF [NRF2020R1A2C4002093]
  3. China Scholarship Council

向作者/读者索取更多资源

This study presents multiple experimental studies on the hydration, strength, and durability properties of ternary or binary composites incorporating calcined Hwangtoh clay and limestone powder. The experimental results indicate that the ternary composite with a 15% replacement level provides the most optimal mixture, and a 30% replacement level is the threshold level for achieving a similar strength as plain concrete. The study also shows a linear relationship between strength and combined water, as well as the synergic relation between calcined clay and limestone in the ternary composite.
Hwangtoh clay is a type of kaolin clay, which is used as an environment-friendly material in constructions. This study presents multiple experimental studies on the hydration, strength, and durability properties of ternary or binary composites, with calcined Hwangtoh clay and limestone powder. The replacement levels of calcined Hwangtoh clay and limestone powder in the composite were in the ranges of 0%-30%, and 0%-15%, respectively. Multiple experimental studies involving compressive strength tests, isothermal calorimetry, thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electrical resistivity, and carbonation were performed. The corresponding experimental results indicated the following: 1) among all the mixtures, the ternary composite with a 15% replacement level provided the most optimal mixture, and 30% replacement level was the threshold level for achieving a similar strength as that of plain concrete; 2) for all the mixtures aged 3-270 days, there was a linear relationship between the strength and combined water; 3) for the ternary composite, the contents of hemicarboaluminate (Hc) became more evident as the amount of Hwangtoh was increased, which showed a synergic relation between the calcined clay and limestone; 4) for the ternary composite, as the replacement levels of limestone and Hwangtoh were increased, the electrical resistivity increased significantly, and so did the carbonation degree; and finally, (5) compared to strength, the combined water was a better indicator for judging the carbonation resistance of the blended concrete. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据