4.7 Article

Machine learning aided stochastic reliability analysis of spatially variable slopes

期刊

COMPUTERS AND GEOTECHNICS
卷 126, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2020.103711

关键词

Machine learning; Stochastic reliability analysis; Spatially variable slopes

向作者/读者索取更多资源

This paper presents machine learning aided stochastic reliability analysis of spatially variable slopes, which significantly reduces the computational efforts and gives a complete statistical description of the factor of safety with promising accuracy compared with traditional methods. Within this framework, a small number of traditional random finite-element simulations are conducted. The samples of the random fields and the calculated factor of safety are, respectively, treated as training input and output data, and are fed into machine learning algorithms to find mathematical models to replace finite-element simulations. Two powerful machine learning algorithms used are the neural networks and the support-vector regression with their associated learning strategies. Several slopes are examined including stratified slopes with 3 or 4 layers described by 4 or 6 random fields. It is found that with 200 to 300 finite-element simulations (finished in about 5 similar to 8 h), the machine learning generated model can predict the factor of safety accurately, and a stochastic analysis of 10(5) samples takes several minutes. However, the same traditional analysis would require hundreds of days of computation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据