4.7 Article

An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 199, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2020.108314

关键词

Epoxy resins; Vitrimers; Imine bonds; Carbon fiber reinforced composites; Recyclability

资金

  1. Natural Science Foundation of Shanghai [18ZR1400700]
  2. Fundamental Research Funds for the Central Universities [2232019D3-48]

向作者/读者索取更多资源

Environmental economics is accelerating the urgency to develop recycling technologies for the ever-growing quantity of discarded carbon fiber reinforced polymer composites (CFRCs). Herein, an imine-containing epoxy hardener (ICH) was synthesized by condensation of lignin-derived vanillin and methylcyclohexanediamine. The epoxy resin (vitrimer) cured by ICH has sufficient glass transition temperature (>= 131 degrees C), tensile strength (>= 82 MPa) and solvent resistance. The incorporated dynamic imine bonds allow the epoxy resin to be repmcessable and degradable. The reprocessed resin has slightly increased glass transition temperature (T-g) and around 90% retention rate of tensile strength. Besides, the imine-containing epoxy resin can be chemically recycled in a closed-loop manner by two different methods. Among them, one recycled epoxy resin almost obtains a full recovery in terms of tensile strength and T-g. The CFRCs based on the ICH cured epoxy resin exhibit comparable flexural properties compared to those based on conventional epoxy resins. The vitrimer feature of the ICH cured epoxy resin enables the CFRCs to be repairable. Especially, 92% strength recovery is achieved for the repaired CFRCs after interlaminar shear failure. Furthermore, nondestructive carbon fibers are recovered from CFRCs by degrading the matrix resin in an amine solvent, and the degradation products can be re-used to prepare new epoxy resins, thus achieving a full recycling process for CFRCs. We believe the findings in this work would provide a promising solution for the recycling of CFRCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据