4.7 Article

A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 198, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2020.108307

关键词

Superhydrophobic; Electrothermal; Graphene; Anti-icing

资金

  1. National Natural Science Foundation of China [51607067, 51977079]
  2. Youth Elite Scientists Sponsorship Program by Chinese Society for Electrical Engineering [CSEE-YESS2017002]
  3. Fundamental Research Funds for the Central Universities [2020MS115, 2017MS149]

向作者/读者索取更多资源

Surface icing tends to cause serious problems such as flash over and the following blackout accident. Although electrothermal system is the most widely used method, how to solve the re-freeze problem as the melted ice tend to stay on the surface is still a challenge. Here, we introduced a superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. The superhydrophobicity together with the high electrothermal efficiency let the graphene surface dry and clean in the simulated glaze ice condition. Although ice accretion would be formed on the surface when the DC voltage was off, the ice could be rapidly removed within 70 s after applying the voltage of 50 V. To enhance the durability of superhydrophobic surface, the hierarchical structure was constructed by the tri-scale nature of inorganic fillers (graphene, carbon nanotubes and silica nanoparticles). Then the hierarchical structure was partially embedded into the substrate by a dissolution and resolidification method. The coupling effect of partially-embedded structure and hierarchical structure led to the superior robustness, which could withstand sandpaper abrasion (500 g load, 8.00 m), the attack of various corrosive liquids, and low/high temperature treatment without losing superhydrophobicity. More remarkably, this graphene superhydrophobic composite retained deicing property even after 30 icing/deicing cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据