4.4 Article

The Antiviral and Antimalarial Drug Repurposing in Quest of Chemotherapeutics to Combat COVID-19 Utilizing Structure-Based Molecular Docking

期刊

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1386207323999200824115536

关键词

COVID-19; drug repurposing; structure-based docking; prediction of lead compounds

向作者/读者索取更多资源

The novel coronavirus disease (COVID-19) is a global threat without specific chemotherapeutics, scientists have discovered 13 compounds with good binding affinity through in-silico molecular docking for inhibition of the COVID-19 protease target.
Background: The novel coronavirus disease (COVID-19) is caused by a new strain (SARS-CoV-2) that erupted in 2019. Nowadays, it is a great threat that claims uncountable lives worldwide. There is no specific chemotherapeutics developed yet to combat COVID-19. Therefore, scientists have been devoted to the quest of the medicine that can cure COVID-19. Objective: Existing antivirals, such as ASC09/ritonavir, lopinavir/ritonavir with or without umifenovir in combination with antimalarial chloroquine or hydroxychloroquine, have been repurposed to fight the current coronavirus epidemic. Exact biochemical mechanisms of these drugs towards COVID-19 have not been discovered to date. Methods: In-silico molecular docking can predict the mode of binding to sort out the existing chemotherapeutics having a potential affinity towards inhibition of the COVID-19 target. An attempt has been made in the present work to carry out docking analyses of 34 drugs, including antivirals and antimalarials, to explain explicitly the mode of interactions of these ligands towards the COVID-19protease target. Results: 13 compounds having good binding affinity have been predicted towards protease binding inhibition of COVID-19. Conclusion: Our in silico docking results have been confirmed by current reports from clinical settings through the citation of suitable experimental in vitro data available in the published literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据