4.7 Article

Sorption and desorption of petroleum hydrocarbons on biodegradable and nondegradable microplastics

期刊

CHEMOSPHERE
卷 273, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128553

关键词

Biodegradable microplastics; Nondegradable microplastics; Sorption kinetics; Sorption isotherms; Desorption hysteresis; Petroleum hydrocarbons

资金

  1. National Institute of Metrology, China [28-AKYZZ2028-20]

向作者/读者索取更多资源

The study found that both biodegradable and nondegradable plastics interact with petroleum hydrocarbons in a similar manner, serving as transportation vectors for the compounds. Different types of microplastics exhibit variations in sorption capacity, likely related to their crystallinity and rubber state.
Both biodegradable and nondegradable plastics are widely used. However, their interactions with petroleum hydrocarbons (PHs) have not been sufficiently studied. In this study, a type of biodegradable [polylactic acid (PLA)] and five types of nondegradable microplastics [polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC)] were selected to investigate the sorption and desorption mechanisms of PHs. The sorption kinetics of the six types of microplastics followed a pseudo-second-order kinetics model (R-2 ranged from 0.956 to 0.999) and indicated that chemical sorption dominated the sorption process. The key rate-controlling steps of the sorption of PHs on microplastics were intraparticle diffusion and liquid film diffusion. The sorption capacity of PHs on microplastics followed the order of PA > PE > PS > PET > PLA > PVC. The difference in sorption capacity might be due to the crystallinity, and rubber or glass state of the microplastics. In addition, all types of microplastics exhibited reversible sorption without noticeable desorption hysteresis. No obvious differences were observed in the sorption and desorption of PHs between biodegradable and nondegradable microplastics. Both biodegradable and nondegradable microplastics could sorb/ desorb PHs and serve as transportation vectors. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据