4.7 Article Proceedings Paper

Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid

期刊

CHEMOSPHERE
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127245

关键词

Pd-Ag; Nanowires; GO-NH2; Formic acid; Cr(VI) reduction

资金

  1. National Natural Science Foundation of China [51571072, 51871078]
  2. Heilongjiang Science Foundation [E2018028]

向作者/读者索取更多资源

Cr(VI) pollution in wastewater has increasingly become a global environmental problem owing to its acute toxicity. Herein, we present the one-pot procedure for preparing the amino-functionalized (-NH2) graphene oxide (GO-) supported networked Pd Ag nanowires by co -reduction growth in polyol solution, which show the highly efficient catalytic performance with the excellent cycling stability for the catalytic Cr(VI) reduction by formic acid as an in-situ source of hydrogen at room temperature. The electron transfer from Ag and amino to Pd increases the electron density of Pd, which enhances the catalytic formic acid decomposition and subsequent the catalytic Cr(VI) reduction. The catalytic reduction rate constant of Pd3Ag1/GO-NH2 is determined to be 0.0768 min(-1), which is much superior to the monometallic Pd/GO-NH2 and Pd3Ag1/GO. This study provides a novel strategy to develop catalysts for the catalytic reduction of Cr(VI) to Cr(III) in the industrial effluent using formic acid as an in-situ source of hydrogen. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据