4.7 Article

In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study

期刊

CHEMOSPHERE
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127117

关键词

Groundwater remediation; In situ chemical oxidation; nZVI; Persulfate activation; Box experiment

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [NRF-2017R1A2B3012681]

向作者/读者索取更多资源

We report the potential of a sulfidized nanoscale zerovalent iron-persulfate (S-nZVI-PS) system for in situ chemical oxidation (ISCO) of groundwater pollutants. The study was conducted using a sand-filled rectangular box with a permeable reactive barrier of S-nZVI as a facsimile of the ISCO system. Synthetic water contaminated with a target pollutant (reactive black-5, RB-5) was continuously passed through the box. The injection of PS led to the complete removal of RB-5 and the system remained reactive for approximately 12 days. This system has a benefit that the oxidation products of S-nZVI (i.e., Fe3O4, Fe2O3, and FeSO4) can further activate PS to retain its reactivity. In a separate trial, this method exploited oxidation, reduction, adsorption and co-precipitation mechanisms that conspired to remove two different groundwater pollutants-arsenite and 1,4-dioxane. These results confirmed the utility of S-nZVI-PS as a mediator of ISCO processes to degrade groundwater pollutants. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据