4.7 Article

Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor

期刊

CHEMOSPHERE
卷 268, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128726

关键词

Tetracycline; Wastewater; Fibrous bed reactor; Biodegradation; Manganese peroxidase

资金

  1. Deanship of Scientific Research, King Saud University through the Vice Deanship of Scientific Research Chairs

向作者/读者索取更多资源

A tetracycline degrading bacterial strain Bacillus velezensis Al-Dhabi 140 was studied for its efficient removal of tetracycline from synthetic wastewater, utilizing manganese peroxidase to transform tetracycline into harmless products in a fibrous bed reactor.
A tetracycline degrading bacterial strains was characterized from the municipal sludge and detected its ability to produce manganese peroxidase. The molecular weight of manganese peroxidase was determined as 46 kDa after Biogel P-100 gel filtration column chromatography purification. Maximum tetracycline degradation was observed with the manganese peroxidase from the strain Bacillus velezensis Al-Dhabi 140 and the optimum degradation process was studied. Optimization revealed the maximum removal efficacy was obtained as 87 mg/L at initial tetracycline concentration 143.75 mg/L, pH 6.94 and 8.04% inoculum. Consequently, fibrous bed reactor containing the culture of B. velezensis Al-Dhabi 140 in fibrous matrix was formed to transform tetracycline in synthetic wastewater. The transformed product of tetracycline from the fibrous bed reactor was evident by the activity of ligninolytic enzymes produced by B. velezensis Al-Dhabi 140 in reactor. The decreased level of antibacterial potency was obtained after 10 days. The zone of inhibition was 24 +/- 1 mm after 1 day and it decreased as 9 +/- 1 mm after 10 days. Based on the findings, fibrous bed B. velezensis Al-Dhabi 140 could be an efficient strain for tetracycline removal from artificial wastewater, even from natural wastewater. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据