4.7 Article

Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols

期刊

CHEMOSPHERE
卷 256, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127083

关键词

Gold nanoparticles; ZSM-5 zeolite; Fluffy structure; Reduction of nitrophenols; Heterogeneous catalysis

资金

  1. Program for the National Natural Science Foundation of China [51879101, 51579098, 51779090, 51709101, 51521006, 51809090, 51909084]
  2. Hunan Provincial Science and Technology Plan Project [2017SK2243, 2018SK20410, 2016RS3026]
  3. National Program for Support of TopeNotch Young Professionals of China (2014)
  4. program for New Century Excellent Talents in University [NCET-13-0186]
  5. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  6. Fundamental Research Funds for the Central Universities [531119200086, 531118010114, 531107050978, 541109060031, 531118010473]

向作者/读者索取更多资源

Catalytic reduction of toxic and aqueous stable nitrophenols by gold nanoparticles (Au NPs) is hot issue due to the serious environmental pollution in recent years. But the expensive price and poor recycling performance of Au NPs limit its further application. Defect-free high silica zeolite is suitable support for Au NPs due to its cheaper price, higher stability and stronger adsorbability, but the low alumina content and defect sites usually lead to poor Au NPs loading efficiency. Herein, we reported the improved Au NPs loading efficiency on defect-free high silica ZSM-5 zeolite through the additional surface fluffy structure. The fluffy structure was created through the addition of multi-walled carbon nanotubes (MWCNTs) and ethanol into synthesis gel. Highly dispersed ca. 4 nm Au NPs on zeolite surface are prepared by the green enhanced sol-gel immobilization method. The Au NPs loading efficiency on conventional ZSM-5 zeolite is 10.7%, in contrast, this result can arrive to 82.6% on fluffy structure ZSM-5 zeolite. The fluffy structure ZSM-5 zeolite and Au NPs nanocomposites show higher efficiency than traditional Au/ZSM-5 nanocomposites towards catalytic reduction of nitrophenols. Additionally, the experiments with different affecting factors (MWCNTs dosage, aging time, catalysts dosage, pH, initial 4-NP concentration, storage time and recycling times) were carried out to test general applicability of the nanocomposites. And the degradation of nitrophenols experiment was operated to explore the catalytic performance of the prepared nanocomposites in further environmental application. The detailed possible relationship between zeolite with fluffy structure and Au NPs is also proposed in the paper. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据