4.8 Article

Colloidal Synthesis of Laterally Confined Blue-Emitting 3.5 Monolayer CdSe Nanoplatelets

期刊

CHEMISTRY OF MATERIALS
卷 32, 期 21, 页码 9260-9267

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.0c03066

关键词

-

资金

  1. European Research Council (ERC) under the European Union [714876 PHOCONA]

向作者/读者索取更多资源

The typical synthesis protocol for blue-emitting CdSe nanoplatelets (NPLs) yields particles with extended lateral dimensions and large surface areas, resulting in NPLs with poor photoluminescence quantum efficiency. We have developed a synthesis protocol that achieves an improved control over the lateral size, by exploiting a series of long-chained carboxylate precursors that vary from cadmium octanoate (C-8) to cadmium stearate (C-18). The length of this metallic precursor is key to tune the width and aspect ratio of the final NPLs, and for the shorter chain lengths, the synthesis yield is improved. NPLs prepared with our procedure possess significantly enhanced photoluminescence quantum efficiencies, up to 30%. This is likely due to their reduced lateral dimensions, which also grant them good colloidal stability. As the NPL width can be tuned below the bulk exciton Bohr radius, the band edge blue-shifts, and we constructed a sizing curve relating the NPL absorption position and width. Further adjusting the synthesis protocol, we were able to obtain even thinner NPLs, emitting in the near-UV region, with a band-edge quantum efficiency of up to 11%. Results pave the way to stable and efficient light sources for applications such as blue and UV light-emitting devices and lasers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据