4.8 Review

Metal-Organic Frameworks in Motion

期刊

CHEMICAL REVIEWS
卷 120, 期 20, 页码 11175-11193

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.0c00535

关键词

-

资金

  1. European Research Council Starting Grant microCrysFact (ERC-2015-STG) [677020]
  2. Consolidator Grant HINBOTs [771565]
  3. ETH Grant MOFBOTs [ETH-33 17-1]
  4. Swiss National Science Foundation [200021_181988]
  5. European Research Council [743217]
  6. Swiss National Science Foundation (SNF) [200021_181988] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

During the last two decades, engineering motion with small-scale matter has received much attention in several areas of research, ranging from supramolecular chemistry and colloidal science to robotics and automation. The numerous discoveries and innovative concepts realized in motile micro- and nanostructures have converged in the field of small-scale swimmers. These man-made micro- and nanomachines can move in fluids by transforming different forms of energy to mechanical motion. Recently, metal-organic frameworks (MOFs), which are crystalline coordination polymers with high porosity, have been proposed as key building blocks in several small-scale swimmer designs. These materials possess the required features for motile micro- and nanodevices, such as high cargo-loading capacity, biodegradability, biocompatibility, and stimuli-responsiveness. In this review, we take a journey through the major breakthroughs and milestones realized in the area of MOF-based small-scale swimmers. First, a brief introduction to the field of small-scale swimmers is provided. Next, we review different strategies that have been reported for imparting motion to MOFs. Finally, we emphasize the incorporation of molecular machines into the MOF's architecture as the means to create highly integrated small-scale swimmers. The strategies and developments explored in this review pave the way toward the use of motile MOFs for a variety of applications in the fields of biomedicine, environmental remediation, and on-the-fly chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据