4.7 Article

Influence of chemical zoning on sandstone calcite cement dissolution: The case of manganese and iron

期刊

CHEMICAL GEOLOGY
卷 559, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.chemgeo.2020.119952

关键词

Sandstone; Calcite; Dissolution; Zoning; Manganese; Iron

资金

  1. BMBF [03G0871A]

向作者/读者索取更多资源

Chemical zoning of crystals can significantly affect dissolution rates, with manganese and iron cation substitutions resulting in substantially lower rates. This finding is crucial for the improvement of kinetic geochemical models at the pore scale.
Chemical zoning of crystals is often found in nature. Crystal zoning can play a role in a mineral's thermodynamic stability and in its kinetic response in the presence of fluids. Dissolution experiments at far-from-equilibrium conditions were performed using a sandstone sample containing calcite cement crystal patches. The surface normal retreat of the calcite crystals was obtained by vertical scanning interferometry (VSI) in their natural position in the rock. Dissolution rate maps showed contrasting surface dissolution areas within the crystals, in the same locations where electron microprobe (EMP) maps showed the presence of manganese (Mn) and iron (Fe) substitutions for calcium in the calcite structure. Iron zoning was only identified in combination with manganese. Maximum registered manganese contents were 1.9(9) wt% and iron were 2(1) wt%. Manganese zoning of only 0.9(5) wt% resulted in around 40% lower dissolution rates than the adjacent pure calcite zones. The combination of both Mn and Fe cation substitutions resulted in one order of magnitude lower dissolution rates compared to pure calcite in the same sample. These results show that mineral zoning can significantly affect reaction rates, a parameter that needs better understanding for the improvement of kinetic geochemical models at the pore scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据