4.7 Article

Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction

期刊

CHEMICAL ENGINEERING JOURNAL
卷 407, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126842

关键词

CO2 electroreduction; Single atom catalyst; Coordination environment; Electrochemical hydrogen pump reactor; Density Functional Theory (DFT)

资金

  1. National Natural Science Foundation of China [U1663223, 21776034]
  2. National Key Research and Development Program of China [2016YFB0101203]
  3. Educational Department of Liaoning Province of China [LT2015007]
  4. Fundamental Research Funds for the Central Universities [DUT16TD19]
  5. Changjiang Scholar Program [T2012049]

向作者/读者索取更多资源

Highly exposed atomically dispersed Cu-N-x sites were successfully synthesized through one-step thermal activation, with Cu-N-4 sites exhibiting boosted activity and selectivity by interacting with *COOH intermediate and facilitating desorption of *CO, leading to high CO Faradaic efficiency.
Although considerable progress has been achieved by Cu nanoparticles for catalyzing CO2 reduction reaction (CO2RR), Cu single atom catalysts (Cu SACs) are generally suffered from inferior performance to that of widely investigated Fe, Co, Ni SACs. This phenomenon mainly ascribes to the lack of effective geometry and electronic engineering of copper active center from an atomic level. Herein, highly exposed atomically dispersed Cu-N-x (x denotes Cu-N coordination number) sites anchored on 3D porous carbon matrix are successfully synthesized through facile one step thermal activation, and Cu-N-4 sites exhibit boosted activity and selectivity compared to its nearly inert Cu-N-3 counterparts. Aided by density functional theory (DFT) calculations, the edge-hosted Cu-N-4 moieties are revealed as key active sites for efficient CO generation via optimized local coordination environment and electronic properties, which strongly interact with *COOH intermediate and facilitate the desorption of *CO. As a result, Cu-N-4 catalyst achieves high CO Faradaic efficiency (FECO) of over 90% from - 0.6 to -1.1 V vs. RHE with a maximum value of 98%, surpassing the previously reported Cu SACs for CO2-to-CO conversion. This work provides new insight into proper Cu SACs design and fundamental mechanism understanding to boost CO2RR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据