4.7 Article

A novel check microvalve designed for non-Newtonian fluids by applying an optimization algorithm

期刊

CHEMICAL ENGINEERING JOURNAL
卷 407, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126911

关键词

No-moving-part valve; Microfluidic system; Topology optimization; Multiobjective optimization; Non-Newtonian fluid

资金

  1. National Natural Science Foundation of China [51676152]

向作者/读者索取更多资源

This paper proposed a topology optimization method for modifying No-moving-part microvalves to enhance performance and reduce drive power. By handling the pressure drop of forwarding flow and the performance of the NMP microvalve independently, it aims to reduce significant pumping power required for flow drive. The research demonstrates the validity of the proposed topology optimization method through numerical examples.
This paper proposed a topology optimization method for modifying the No-moving-part (NMP) microvalves to enhancing performance and reducing drive power. No-moving-part microvalves are check microvalves without movable devices, which allow fluid to pass freely in one direction while hindering flow in the reverse direction. They only depend on the inertial force of flow rather than the mechanical mechanism. Taking into account that the fluid being transferred in the microsystem is often a biological or chemical medium, the non-Newtonian fluid (such as blood) is selected necessarily for optimization. At the same time, several previous studies have widely used diodicity to indicate the performance of NMP microvalves. However, higher diodicity does not reflect the degree of forwarding energy dissipation, leading to a significant pumping power to drive flow. Therefore, the pressure drop of forwarding flow and the performance of the NMP microvalve are handled independently by a bi-objective formulation, during the design of the NMP microvalve. In the numerical implementation, Helmholtz-type Partial Differential Equation (PDE) based filter and smoothed Heaviside projection filter are utilized to produce discrete solutions, thus solving ill-posedness. This paper presents a density-based bi-objective topology optimization (TO) method of Tesla microvalves, in which the modified artificial Darcy friction force term is added to the Navier-Stokes equations. Finally, several numerical examples of the bi-objective functions are studied and the validity of the topology optimization method presented in this paper is demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据