4.7 Article

Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide

期刊

CHEMICAL ENGINEERING JOURNAL
卷 397, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125336

关键词

Polylactide; MXene; Polyphosphoramide; Flame retardancy; Thermal stability; Mechanical properties

资金

  1. National Natural Science Foundation of China [51873196, 21671146, 51573169]
  2. Australia Research Council [DP190102992, FT190100188, IC170100032]
  3. National Natural Science Foundation of Zhejiang Province [LY15E030007]
  4. Key Research and Development Projects of Zhejiang Province, China [2018C01051, 2019C01098]
  5. Australian Research Council [IC170100032] Funding Source: Australian Research Council

向作者/读者索取更多资源

The creation of thermostable, flame-retardant, mechanically robust bioplastics is highly desirable in the industry as one sustainable alternative to traditional petroleum-based plastics. Unfortunately, to date there lacks an effective strategy to endow commercial bioplastics, such as polylactide (PLA) with such desired integrated performances. Herein, we have demonstrated the fabrication of a novel MXene-phenyl phosphonic diaminohexane (MXene-PPDA) nanohybrid via the intercalation of PPDA into the MXene interlayer. The interlayer spacing of MXene nanosheets is enlarged and as-prepared MXene-PPDA is homogeneously dispersed in the PLA matrix. Incorporating 1.0 wt% MXene-PPDA enables PLA to achieve a UL-94 V-0 rating, with a similar to 22.2% reduction in peak heat release rate, indicating a significantly improved flame retardancy. Meanwhile, the 1.0 wt% MXene-PPDA also increases the initial decomposition temperature of PLA composite, giving rise to a similar to 25-fold enhancement in char yield relative to pure PLA. Additionally, the MXene-PPDA enhances the toughness while retains the mechanical strength for PLA. This work offers an innovative strategy for the design of multifunctional additives and the creation of high-performance polymers with high thermal stability, mechanical robustness and low flammability, expecting to find many practical applications in the industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据