4.7 Article

Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: Effectiveness, material synergy and roles of carbon

期刊

CHEMICAL ENGINEERING JOURNAL
卷 395, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124991

关键词

PFOA; PFAS; Adsorption; Photodegradation; Bismuth phosphate; Concentrate and destroy

资金

  1. Strategic Environmental Research and Development Program (SERDP) [ER18-1515]
  2. Auburn University IGP program
  3. China Scholarship Council [201806775052]

向作者/读者索取更多资源

Per- and polyfluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) are recalcitrant to conventional wastewater treatment processes. In search for a more effective technology, we prepared a carbon sphere (CS) modified bismuth phosphate composite photocatalyst (BiOHP/CS) through a hydrothermal process. BiOHP/CS was able to adsorb > 99% of PFOA in 2 h (dosage = 1.0 g/L, initial PFOA = 200 mu g/L, pH = 7.0), and subsequently, in situ decompose adsorbed PFOA nearly completely in 4 h of UV irradiation. The PFOA degradation rate was similar to 18 times greater than that by neat BiOHP. Advanced spectroscopic analyses and density functional theory calculations revealed that the carbon modification not only enhances the PFOA adsorption capacity, but also facilitates a side-on adsorption configuration of PFOA on the photoactive sites. While only the head carboxylate group was involved in PFOA adsorption on neat BiOHP, both the CF2/CF3 entities and the head carboxylate group participated in adsorption of PFOA on BiOHP/CS, which facilitates the subsequent photocatalytic cleavage of the C-F bonds. Photoluminescence emission analysis and density of states calculations confirmed the CS-facilitated side-on adsorption mode and CS-enhanced separation of electrons and holes. In addition, the CS modification facilitates activation of PFOA by changing the electron distribution of the C-F bond, and enhances the stability and reusability of BiOHP by preventing photo-corrosion of the composite material. Overall, the findings provide important insights into the roles of carbonaceous modification and adsorption configurations in enhanced photocatalytic destruction of PFOA, which may guide future design and fabrication of environment-friendly adsorptive photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据