4.7 Article

In-plane coupling electric field driving charge directional transfer for highly efficient H2 bubble evolution

期刊

CHEMICAL ENGINEERING JOURNAL
卷 396, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125365

关键词

In-plane coupling electric field; Directional charge transfer; G-C3N4; H-2 fuel; H2O splitting

资金

  1. National Natural Science Foundation of China [21871155, 51972177]
  2. Natural Science Foundation of Ningbo City [2018A610067, 2019A610022]
  3. Yongjiang Scholar Plan
  4. Fan 3315 Plan

向作者/读者索取更多资源

Directional charge transfer across in-plane structure of g-C3N4 is still inefficient because of the uniform delocalization charge distribution around triangular caves of the pi-conjugated tri-s-triazine polymer, which severely restricts its application in solar energy conversion into H-2 fuel. Herein, an in-plane coupling electric field is introduced to boost charge directional transfer by coupling Li+ with sp(2)-hybridized N ligand at triangular cave of g-C3N4 (LiC3N4) for highly efficient H-2 bubble evolution. The constructed LiC3N4 demonstrates much high H-2-evolution efficiency with a large number of visible H-2 bubbles, which presents absolute performance advantage and industrial potential in comparison with g-C3N4 supported numerous noble metals. Density functional theory and characterizations reveal an efficient charge directional transfer from the 2p(z) orbit of sp(2)-hybridized N ligand to Li atom across in-plane structure of LiC3N4 is achieved under the coupling electric field, resulting in an efficient H-2 bubble evolution. This research strategy shows a scientific perspective to boost directional charge transfer for much effective solar energy conversion into H-2 fuel by Li+ coupling effect, which will be bound to introduce the competition for lithium resources between photocatalytic solar energy conversion and lithium batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据