4.7 Article

Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property

期刊

CHEMICAL ENGINEERING JOURNAL
卷 398, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125575

关键词

Bioinspired; ZnO/Au; Antibacterial; Antiadhesive; Nanopillar

资金

  1. National Natural Science Foundation of China (NSFC) [51772121, 51975245]
  2. Jilin Provincial Science & Technology Department [20200401126GX]
  3. Joint Program of Jilin Province [SXGJQY2017-1]
  4. JLU [SXGJQY2017-1]

向作者/读者索取更多资源

Biological contamination of surfaces is a thorny issue that brings series of adverse factors to the daily life and industrial manufacture. A dragonfly-wing-mimicking nanopillar array of ZnO/Au on Polydimethylsiloxane (PDMS-ZnO/Au) with two-fold bactericidal activity as well as the antiadhesive property has been developed. In this process, ZnO nanopillar is obtained using a hydrothermal method followed by the introduction of plasmonic gold nanoparticles (AuNPs) via a photo-reduction protocol. The obtained PDMS-ZnO/Au surface demonstrates physical antibacterial performance, resulting in a killing rate of 65.5% in dark. Furthermore, the surface effectively inactivates bacteria under visible light irradiation, yielding a lethality > 99.9% in 30 min. The advantages of high lethality rate and short action time are endowed to PDMS-ZnO/Au by a two-fold antibacterial action combining the enhanced photocatalysis upon the introduction of Au nanoparticles and the mechanical property of biomimetic nanostructure. Meanwhile, the nanopillar-modified PDMS can also function as a superhydrophobic surface and efficiently impede bacterial adhesion by over 99.9%. Therefore, the approach presented here holds a promising solution to tackle biological contamination for medical paint, catheter and implant equipment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据