4.5 Article

TE Design Lab: A virtual laboratory for thermoelectric material design

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 112, 期 -, 页码 368-376

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2015.11.006

关键词

Thermoelectrics; High-throughput; Materials genome initiative; TE Design Lab

资金

  1. National Science Foundation (NSF) [1334713, 1334351, 1333335]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1334351] Funding Source: National Science Foundation
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1334713] Funding Source: National Science Foundation

向作者/读者索取更多资源

The discovery of advanced thermoelectric materials is the key bottleneck limiting the commercialization of solid-state technology for waste heat recovery and compression-free refrigeration. Computationally-driven approaches can accelerate the discovery of new thermoelectric materials and provide insights into the underlying structure-property relations that govern thermoelectric performance. We present TE Design Lab (www.tedesignlab.org), a thermoelectrics-focused virtual laboratory that contains calculated thermoelectric properties as well as performance rankings based on a metric (Yan et al., 2015) that combines ab initio calculations and modeled electron and phonon transport to offer a reliable assessment of the intrinsic material properties that govern the thermoelectric figure of merit zT. Another useful component of TE Design Lab is the suite of interactive web-based tools that enable users to mine the raw data and unearth new structure-property relations. Examples that illustrate this utility are presented. With the goal of establishing a close partnership between experiments and computations, TE Design Lab also offers resources to analyze raw experimental thermoelectric data and contribute them to the open access database. (C) 2015 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据