4.7 Article

Experimental observations of chimera states in locally and non-locally coupled Stuart-Landau oscillator circuits

期刊

CHAOS SOLITONS & FRACTALS
卷 138, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2020.109907

关键词

-

资金

  1. University of Catania

向作者/读者索取更多资源

Nontrivial spatiotemporal patterns emerge across many systems of interacting oscillators, still the number of experimental investigations remains relatively limited. In this paper, we consider an experimental setup of ten electronic circuits, each of which modeling a Stuart-Landau oscillator, and investigate different arrangements of their interactions under diverse settings of the coupling strength, which acts as a bifurcation parameter for the system. We introduce a set of three empirical measures, allowing the straightforward classification of synchronization states in this system. We observe a rich repertoire of synchronization patterns, including global synchronization, oscillation death, chimera states and traveling waves, spontaneously breaking the symmetry of the configuration. Interestingly, the intervals of the bifurcation parameter wherein these states are observed overlap, revealing multiple regions of multistability. Our experimental results also allow drawing important conclusions on the chimera states observed, showing that i) they can be consistently observed in a system of relatively low size, ii) they are stable, iii) their basin of attraction is large enough to encompass the 'normal' operating conditions of the circuit, iv) their emergence is not appreciably influenced by small heterogeneities between units due to parametric tolerances. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据