4.7 Article

Structural and photocatalytic properties of new rare earth La3+ substituted MnFe2O4 ferrite nanoparticles

期刊

CERAMICS INTERNATIONAL
卷 46, 期 14, 页码 23208-23217

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2020.06.103

关键词

Nanomaterials; Photocatalysis; XRD; SEM; UV-Visible

资金

  1. King Saud University (KSU) [RSP-2020/49]
  2. American University in Cairo (AUC) through STRC minigrant and research project [SSE-CHEM-S.Z.-FY19-FY20-FY21-RG (1-19)-2018-Oct-01-17-53-22]

向作者/读者索取更多资源

A multipurpose, environment-friendly, and effective catalyst for control of environmental contaminants is an enduring interest in recent years. In the present study, lanthanum substituted spinel ferrite (LaxMnFe2-xO4) nanoparticles were synthesized using an eco-friendly, low cost-effective reverse-micelle synthesis strategy. Thermal analysis was done to annualize the annealing temperature of prepared precipitates. X-ray diffraction (XRD) study revealed the well-defined cubic spinel structure of LaxMnFe2-xO4 with the presence of a very minute secondary phase by the introduction of La3+ ion. Fourier transform infrared spectroscopy (FTIR) study confirmed the M - O metal-oxygen bond stretching at tetrahedral and octahedral sites. Surface morphology analyzed by field emission scanning electron microscopy (FESEM) revealed the narrow size distribution having nanoparticles size of nearly 60 nm. From the bandgap study, an enhanced redshift of 2.40 eV directed its semiconductor photocatalysis behavior. The degradation efficiency of pristine MnFe2O4 and La3+ ion substituted MnFe2O4 material was investigated using a contaminant crystal violet dye. Higher degradation efficiency, kinetic investigation smart degradation mechanism, and simple recovery suggested that the newly designed La3+ ion substituted MnFe2O4 photocatalytic material is best for environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据