4.7 Article

Microstructural evolution and characterization of interfacial phases in diffusion-bonded SiC/Ta-5W/SiC joints

期刊

CERAMICS INTERNATIONAL
卷 46, 期 14, 页码 22650-22660

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2020.06.028

关键词

SiC; Interface reaction; Microstructural characterization; Phase evolution

资金

  1. National Magnetic Confinement Fusion Program of China [2015GB121003]
  2. Fundamental Research Funds for the Central Universities [PA2018GDQT0018]

向作者/读者索取更多资源

The evolution of reaction phases formed in diffusion-bonded SiC/Ta-5W/SiC joints was investigated at a joining temperature of 1500-1700 degrees C for 10-90 min. The effects of bonding temperature and holding time on the phase evolution were found to be directly correlated with the thickness of the interfacial reaction layer when a 100-pmthick Ta-5W interlayer was used for joining. In the case of a similar to 7-mu m-thick reaction layer, the interfacial phase constitution consisted of a layered SiC/(Ta,W)/(Ta,W)(5)Si-3/(Ta,W)(2)Si/(Ta,W)(x)Si-y/Ta-5W structure. In the reaction layer with a thickness of similar to 11-26 mu m, the interfacial structure evolved into SiC/(Ta,W)C/(Ta,W)(5)Si-3/(Ta,W)C/(Ta,W)(x)Si-y/(Ta,W)(2)Si/(Ta,W)(x)Si-y/Ta-5W, in which an additional (Ta,W)C/(Ta,W)(x)Si-y layer was inserted between (Ta,W)(5)Si-3 and (Ta,W)(x)Si-y owing to the precipitation of carbon from the (Ta,W)(5)Si-3 layer. When the Ta-5W interlayer was fully consumed to form a stable reaction product, namely the equilibrium state, (Ta,W)(x)Si-y and (Ta,W)(2)Si were eventually transformed into (Ta,W)(5)Si-3, and the final interface structure that was obtained was SiC/(Ta,W)C/(Ta,W)(5)Si-3/(Ta,W)C/(Ta,W)(5)Si-3/(Ta,W)C. This achievement will benefit the design, control, and characterization of SiC/metal interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据