4.8 Article

Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries

期刊

CARBON
卷 168, 期 -, 页码 448-457

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2020.07.021

关键词

Hard carbon; P doping; Sodium ion battery; Heteroatom doping; Anode

资金

  1. National Research Foundation of Korea (NRF) - Korean government (Ministry of Science and ICT) [2018R1C1B5046894, 2013M3A6B1078874]
  2. National Research Foundation of Korea [2013M3A6B1078874, 2018R1C1B5046894] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Carbonaceous materials are the most promising anode materials in electrochemical energy storage systems. However, poor electrochemical performance is a major obstacle to their practical use. Here, P-doped carbon balls (PCBs) are synthesized through a simple novel method, the solution plasma process (SPP), which is different from the conventional synthesis method, and used as an anode material in sodium ion batteries (SIBs). The PCBs synthesized by this approach show a high P content of about 4 at%. Meanwhile, P doping and disordered amorphous structures of PCBs provide abundant active sites and capacitive-dominant Na+ adsorption behavior, while large amounts of meso- and macropores shorten the Na+ diffusion distance, accelerating ion transport. The PCB anode material provides a high initial coulombic efficiency of about 75% and a high reversible capacity of 340 mAh g(-1) at a current density of 1 A g(-1). Even at an ultrahigh current density of 100 A g(-1), an outstanding rate performance of 130 mA g(-1) and reversible capacity of 83 mAh g(-1) after 40,000 cycles provide excellent cycling stability. This synthesis strategy not only provides a very efficient approach to heteroatom doping but will also be a great impetus for the practical use of SIBs. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据