4.8 Article

Origin of the enhanced photocatalytic activity of graphitic carbon nitride nanocomposites and the effects of water constituents

期刊

CARBON
卷 167, 期 -, 页码 852-862

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2020.06.028

关键词

Natural organic matter; Humic acid; Cyclooctasulfur; Band alignment; Tetracycline

资金

  1. Ministry of Science and Technology (MOST) of Taiwan
  2. Kwangwoon University

向作者/读者索取更多资源

A metal-free heterostructure system composed of graphitic carbon nitride (g-C3N4), reduced graphene oxide (rGO), and cyclooctasulfur (alpha-S) is developed as a facile route for establishing efficient photo catalysts. We aim to identify the governing factors that contributed to the photochemical performance of g-C3N4/rGO/alpha-S nanocomposites, which are important to advance potential applications but remain unexplored. The results indicate that the constituent ratio of each component in g-C3N4/rGO/alpha-S composites leads to varying surface microstructure, band alignment, and photochemical properties. The enhanced visible-light photocatalytic activity originates from an upward shift of the conduction bands toward higher energies, higher content of sp(2)-hybridized pyridine nitrogen in triazine rings (C=N-C), and a lower amount of hydrogen bonds. The established structural integration informs a guiding framework for the design of emerging g-C3N4-based nanocomposites. Additionally, the influence of humic acid (HA) on photocatalytic decontamination was studied and shows an overall detrimental effect on the photocatalytic activity of g-C3N4 nanocomposites. Although HA advanced the photoexcited electrons, and therefore the reactive oxygen species, as well as enhanced the adsorption of the pollutants onto g-C3N4, especially at lower pH, attenuation of oxygen transfer as a result of active site competition between oxygen and target pollutants was found. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据