4.8 Article

Controlled graphite surface functionalization using contact and remote photocatalytic oxidation

期刊

CARBON
卷 172, 期 -, 页码 637-646

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2020.10.069

关键词

Photocatalysis; Graphite; Surface functionalization; Oxidation control

资金

  1. Flemish government (Methusalem)

向作者/读者索取更多资源

Controlled chemical functionalization of graphite's outer surface layers into photocatalytically oxidized graphite (POG) can be achieved through a mild and highly controllable process using a UV-driven photocatalytic oxidation method. This process results in a chemically tailored POG surface with moderate oxidation degree, suitable for applications such as electrocatalysis.
Controlled chemical functionalization of graphite's outer surface layers into photocatalytically oxidized graphite (POG) is reported. POG can be easily prepared via a UV-driven process using titanium dioxide photocatalyst in molecular oxygen and water vapor at relatively low temperature. The photo-oxidation offers a mild and highly controllable process, providing a chemically tailored POG surface with moderate oxidation degree. Raman spectroscopy is used to directly track the transformation of planar sp(2)-hybridized carbon to oxygenated sp(3)-hybridized chemical functions. Covalent carbon-oxygen bonding at the graphite surface upon oxidation is confirmed by XPS. This vapor-phase process in absence of hazardous liquid chemicals causes oxygen-functionalized and thermally stable POG with an oxygen content up to 14 wt%, suggesting it to be useful for electrocatalysis. Oxidation can be performed with the photocatalyst in direct contact with graphite or mounted at a distance (remote mode). This titanium dioxide-based photocatalytic oxidation is also effective on refractory highly oriented pyrolytic graphite (HOPG). HRSEM and AFM reveal the existence of differently sized surface blisters on natural graphite and HOPG following oxidation. Addition of nitric oxide to the gas mixture accelerates the photoreaction and promptly leads to graphite surface pits and edge erosion due to excessive oxidative strength. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据